Konstruktiver Konflikt im Supraleiter
Ladungsdichtewellen verbessern das Verständnis des widerstandslosen Stromtransports und könnten ein ungewöhnliches Zusammenspiel von supraleitenden und magnetischen Materialien erklären
Ob ein Material Strom ohne Verlust leitet, ist nicht zuletzt eine Frage der richtigen Temperatur. Diese könnte sich für Hochtemperatur-Supraleiter künftig zuverlässiger vorhersagen lassen. Solche Materialien geben ihren Widerstand auf, wenn sie mit flüssigem Stickstoff gekühlt werden, der relativ einfach zu handhaben ist. Ein internationales Team, an dem Physiker des Max-Planck-Instituts für Festkörperforschung in Stuttgarter maßgeblich beteiligt waren, hat nun herausgefunden, dass diese Form der Supraleitung mit Ladungsdichtewellen, also mit einer periodisch schwankenden Verteilung der Ladungen konkurriert. Da die Physiker diesen Wettbewerb in ihren Modellen bislang nicht berücksichtigten, blieben ihre Berechnungen der Sprungtemperatur, bei der die Supraleitung eintritt, ungenau. In einer weiteren Arbeit haben die Forscher des Stuttgarter Max-Planck-Instituts Erkenntnisse gewonnen, wie supraleitende mit magnetischen Materialien wechselwirken. Dabei haben sie beobachtet, dass die elektronischen Eigenschaften Kristallschwingungen in größerem Umfang beeinflussen, als zu erwarten war. Dieser Effekt könnte helfen, Materialeigenschaften wie die Supraleitung oder die Thermoelektrizität zu kontrollieren.
Wenn Strom künftig von leistungsstarken Offshore-Windparks oder gar von ausgedehnten Solarfeldern in der Sahara an die Verbraucher in Deutschland verteilt werden sollte, wird einige Energie in den langen Stromleitungen verloren gehen. Supraleitende Kabel könnten da Abhilfe schaffen, wenn ihre Kühlung nicht mehr Energie verbraucht als sie einzusparen helfen. Materialien, die den Namen Hochtemperatur-Supraleiter auch gemessen an der Praxis und gemessen an unserem alltäglichen Temperaturempfinden verdienen, wollen Bernhard Keimer und seine Mitarbeiter am Max-Planck-Institut für Festkörperforschung in Stuttgart identifizieren. Zu diesem Zweck müssen sie zunächst jedoch verstehen, wie die Supraleitung in den Materialien funktioniert und beeinflusst werden kann, die als Hochtemperatur-Supraleiter bezeichnet werden, obwohl sie ihren Widerstand erst bei Minusgraden verlieren, gegen die ein sibirischer Winter geradezu mild ist. Mit zwei aktuellen Arbeiten sind die Stuttgarter Physiker auf diesem Weg nun einen Schritt vorangekommen.
Einer ihrer Entdeckungen zufolge können wir wahrscheinlich froh sein, dass es Hochtemperatur-Supraleitung überhaupt gibt – eine Eigenschaft, die trotz der momentanen Mankos vielversprechend bleibt. „Sie verdanken wir offenbar einem Glücksfall“, sagt Bernhard Keimer, Direktor am Stuttgarter Max-Planck-Institut. Das legt zumindest die Beobachtung des internationalen Teams nahe, an dem neben Bernhard Keimer und seinen Kollegen auch Wissenschaftler des Politecnico di Milano, der European Synchrotron Radiation Facility Grenoble, der University of British Columbia in Kanada sowie einiger weiterer Forschungseinrichtungen beteiligt waren.
Die Supraleitung schlägt die Ladungsdichtewellen in einem knappen Wettbewerb
Die Forscher haben herausgefunden, dass die Supraleitung in einer Art von Kupferoxid-Keramiken mit einem Zustand konkurriert, in dem sich eine Ladungsdichtewelle ausbildet. Solche Ladungsdichtewellen kennen Physiker schon seit Jahrzehnten von zweidimensionalen Materialien wie etwa Niobseleniden. Darin verteilen sich die Leitungselektronen nicht gleichmäßig über den Kristall wie in einem Metall. Vielmehr bilden sie ein regelmäßiges Muster von Gebieten, in denen sie sich mal stärker und mal weniger stark konzentrieren.
„In den supraleitenden Cupraten haben wir die Ladungsdichtewellen nicht erwartet, weil sie die Supraleitung zerstören“, sagt Bernhard Keimer. Statt sich in regelmäßigen Abständen mal mehr und mal weniger zu konzentrieren schließen sich die Elektronen in Supraleitern zu Cooper-Paaren zusammen, die widerstandslos durch einen Kristall flutschen können. Dementsprechend beobachteten die Forscher die Ladungsmuster nur oberhalb der Sprungtemperatur, bei der das Material supraleitend wird.
Jedoch wuchsen die Bereiche zunächst, in denen sich Ladungsdichtewellen ausbildeten, während die Forscher das Material zur Sprungtemperatur abkühlten. Sobald sie jedoch die Sprungtemperatur bei minus 213 Grad Celsius erreichten, verschwanden die Ladungsdichtewellen plötzlich und die Supraleitung setzte sich durch. „Die Supraleitung setzt sich in diesem Wettbewerb nur knapp durch“, erklärt Bernhard Keimer. „Wenn die Vorteile dabei nur ein bisschen anders verteilt wären, gäbe es die Hochtemperatursupraleitung möglicherweise gar nicht.“
Ladungsdichtewellen erklären zu hoch berechnete Sprungtemperaturen
Aufgespürt hat das Forscherteam die Ladungsdichtewellen, indem sie Yttrium- und Neodymbariumcupraten der Zusammensetzung (Y,Nd)Ba2Cu3O6+x mithilfe der resonanten Röntgenstreuung durchleuchteten. Diese liefert ihnen exklusive Informationen über die Elektronen, die sich nur schwer entscheiden können, ob sie lieber eine Welle machen oder auf Partnersuche gehen wollen, um gemeinsam leichter durch ihren Kristall zu schlüpfen. Diese Messungen werden die Physiker um Bernhard Keimer nun auch an anderen Hochtemperatursupraleitern vornehmen. So wollen sie herausfinden, ob sich alle diese Materialien in einer elektronischen Konkurrenz befinden.
Zudem werden die Forscher den Widerstreit zwischen den beiden elektronischen Zuständen in ihrem theoretischen Modell der Supraleitung berücksichtigen. „Mit diesem Modell können wir die Sprungtemperatur eines Materials schon ziemlich gut berechnen, landen dabei aber immer etwas zu hoch“, sagt Bernhard Keimer. „Die Konkurrenz mit der Ladungsdichtewelle erklärt diese Diskrepanz, so dass unsere Vorhersagen künftig noch präziser werden dürften.“