May 06, 2023
original

 

A. Gouder, et al.
Energy Environ. Sci. 2023, 16, 1520–1530
© Image courtesy of V. Hiendl
(e-conversion)

 

original

 

C. Stähler, et al.
Chem. Sci. 2022, 13, 8253–8264
© Image courtesy of V. Hiendl
(e-conversion)

original

 

S.T. Emmerling, et al.
J. Am. Chem. Soc. 2021, 143, 15711–15722
© Image courtesy of V. Hiendl
(e-conversion)

original

 

M. Däntl, et al.
Small 2021, 17, 2007864
© Image courtesy of A. Jiménez-Solano
(MPI for Solid State Research)

original

 

L. Grunenberg, et al.
J. Am. Chem. Soc. 2021, 143, 3430–3438
© Image courtesy of V. Hiendl
(e-conversion)

original

 

J. Kröger, et al.
Adv. Energy Mater. 2021, 11, 202003016
© Image courtesy of V. Hiendl
(e-conversion)

original

 

F. Haase, B.V. Lotsch
Chem. Soc. Rev. 2020, 49, 8469–8500
© Image courtesy of V. Hiendl
(e-conversion)

original

 

A. Pütz et al.
Chem. Sci. 2020, 11, 12647–12654
© Image courtesy of V. Hiendl
(e-conversion)


original

 

V. Sridhar, et al.
PNAS 2020, 117, 24748–24756
© Image courtesy of V. Hiendl
(e-conversion)

original

 

K. Gottschling et al.
J. Am. Chem. Soc. 2020, 142, 12146–12156
© Image courtesy of K. Gottschling
(MPI for Solid State Research and LMU)

original

 

M. Däntl et al.
Nanoscale Horiz. 2020, 5, 74-81
© Image courtesy of M. Däntl, A. Jiménez-Solano
(MPI for Solid State Research and LMU)

original

 

K. Gottschling et al.
Chem. Mater. 2019, 31, 1946–1955
© Image courtesy of K. Gottschling
(MPI for Solid State Research and LMU)

original

 

K. Szendrei‐Temesi,
A. Jiménez‐Solano, et al.
Adv. Mater. 2018, 30, 1803730
© Image courtesy of K. Szendrei‐Temesi,
A. Jiménez‐Solano
(MPI for Solid State Research and LMU)

original

 

L. Stegbauer et al.
Adv. Energy Mater.
2018, 8, 1703278
© Image courtesy of Christoph Hohmann (NIM)

original

 

A. von Mankowski, et al.
Nanoscale Horiz. 2018, 3, 383–390
© Image courtesy of Christoph Hohman (NIM)

and Katalin Szendrei-Temesi (MPI for Solid State Research and LMU)

original

 

K. Szendrei-Temesi et al.
Adv. Funct. Mater. 2018, 28, 1705740
© Image courtesy of Katalin Szendrei-Temesi
(MPI for Solid State Research)

original

 

F. Podjaski, J. Kröger, et al.
Adv. Mater. 2018, 30, 1705477
© Image courtesy of Christoph Hohmann (NIM)

original

 

P. Ganter et al.
ChemNanoMat 2017, 3, 411–414
© Image courtesy of Pirmin Ganter
(MPI for Solid State Research)

original

 

P. Ganter, et al.
Adv. Mater. 2016, 28, 7436–7442
© Image courtesy of Christoph Hohmann (NIM)

original

 

T. Holzmann et al.
Energy Environ. Sci. 2016, 9, 2473–2473
© Image courtesy of Christoph Hohmann (NIM)

original

 

I. Pavlichenko et al.
Mater. Horiz. 2015, 2, 299–308
© Image courtesy of Christoph Hohmann (NIM)

original

 

V.S. Vyas et al.
CrystEngComm 2014, 16, 7389–7392
© Image courtesy of Regine Noack
(MPI for Solid State Research)

original

 

A. Kuhn et al.
J. Mater. Chem. A 2014, 2, 6100–6106
© Image courtesy of Christoph Hohmann (NIM)

original

 

A. Ranft et al.
CrystEngComm 2013, 15, 9296–9300
© Image courtesy of Christoph Hohmann (NIM)

Research in the Nanochemistry Department is geared towards the rational synthesis of new multifunctional materials with engineered properties by combining the tools of solid-state chemistry, molecular chemistry, and nanochemistry. We aim at creating function from both atomic-scale structure and nanoscale morphology, with a strong emphasis on exploring structure-property-activity relationships in functional materials based on a variety of diffraction, spectroscopic and microscopic techniques. Specifically, we invoke concepts of classical solid state synthesis, soft chemistry and directed self-assembly to develop new two-dimensional systems, porous frameworks, photonic nanostructures and layered heterostructures with application potential in sensing, catalysis, as well as photo- and electrochemical energy conversion and –storage.

Go to Editor View