The phenomenon of quantum criticality in magnetic systems, on the one hand, exhibits fascinating physics, e.g., the breakdown of the standard theory of metals, Landau’s Fermi liquid theory. On the other hand it provides a big challenge for the theory, mainly because several of the experimentally analyzed materials exhibiting quantum phase transitions are strongly correlated, such as the so-called heavy fermion compounds. The difficulty of describing strongly correlated electron systems arises as in these materials the Coulomb interaction between the electrons is poorly screened and, hence, it is not possible to understand their physics in terms of a non-interacting electron gas. This implies that standard methods such as conventional perturbation theories are no longer applicable. In fact, also in the specific case of quantum phase transitions, the Hertz-Millis-Moriya theory, is expected to break down if correlations become dominant. In the state-of-the-art theory, dynamical mean field theory (DMFT), strong correlations can be treated. DMFT neglects all spatial correlations but takes all temporal correlations into account. However, for the description of low dimensionality (e.g. three or even two dimensions) as well as the highly non-local quantum criticality, also non-local (i.e. spatial) correlations have to be included in the theory on top of the purely temporal ones. This can be achieved by extending the DMFT in certain ways. One possible extension, which includes spatial correlations on every length scale, is the so-called dynamical vertex approximation (DΓA), which has the potential to properly describe a magnetic quantum phase transition at zero temperature.
T. Schäfer, et al.,
Phys. Rev. Lett. 122, 227201 (2019)T. Schäfer, et al.,
Phys. Rev. Lett. 119, 046402 (2017)